Papers
Topics
Authors
Recent
2000 character limit reached

Rewriter-Evaluator Architecture for Neural Machine Translation (2012.05414v4)

Published 10 Dec 2020 in cs.CL

Abstract: Encoder-decoder has been widely used in neural machine translation (NMT). A few methods have been proposed to improve it with multiple passes of decoding. However, their full potential is limited by a lack of appropriate termination policies. To address this issue, we present a novel architecture, Rewriter-Evaluator. It consists of a rewriter and an evaluator. Translating a source sentence involves multiple passes. At every pass, the rewriter produces a new translation to improve the past translation and the evaluator estimates the translation quality to decide whether to terminate the rewriting process. We also propose prioritized gradient descent (PGD) that facilitates training the rewriter and the evaluator jointly. Though incurring multiple passes of decoding, Rewriter-Evaluator with the proposed PGD method can be trained with a similar time to that of training encoder-decoder models. We apply the proposed architecture to improve the general NMT models (e.g., Transformer). We conduct extensive experiments on two translation tasks, Chinese-English and English-German, and show that the proposed architecture notably improves the performances of NMT models and significantly outperforms previous baselines.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.