Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Hardness results for Multimarginal Optimal Transport problems (2012.05398v1)

Published 10 Dec 2020 in math.OC, cs.CC, cs.DS, and cs.LG

Abstract: Multimarginal Optimal Transport (MOT) is the problem of linear programming over joint probability distributions with fixed marginals. A key issue in many applications is the complexity of solving MOT: the linear program has exponential size in the number of marginals k and their support sizes n. A recent line of work has shown that MOT is poly(n,k)-time solvable for certain families of costs that have poly(n,k)-size implicit representations. However, it is unclear what further families of costs this line of algorithmic research can encompass. In order to understand these fundamental limitations, this paper initiates the study of intractability results for MOT. Our main technical contribution is developing a toolkit for proving NP-hardness and inapproximability results for MOT problems. We demonstrate this toolkit by using it to establish the intractability of a number of MOT problems studied in the literature that have resisted previous algorithmic efforts. For instance, we provide evidence that repulsive costs make MOT intractable by showing that several such problems of interest are NP-hard to solve--even approximately.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube