Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

SSD-SSD: Communication sparsification for distributed deep learning training (2012.05396v3)

Published 10 Dec 2020 in cs.DC

Abstract: Intensive communication and synchronization cost for gradients and parameters is the well-known bottleneck of distributed deep learning training. Based on the observations that Synchronous SGD (SSGD) obtains good convergence accuracy while asynchronous SGD (ASGD) delivers a faster raw training speed, we propose Several Steps Delay SGD (SSD-SGD) to combine their merits, aiming at tackling the communication bottleneck via communication sparsification. SSD-SGD explores both global synchronous updates in the parameter servers and asynchronous local updates in the workers in each periodic iteration. The periodic and flexible synchronization makes SSD-SGD achieve good convergence accuracy and fast training speed. To the best of our knowledge, we strike the new balance between synchronization quality and communication sparsification, and improve the trade-off between accuracy and training speed. Specifically, the core components of SSD-SGD include proper warm-up stage, steps delay stage, and our novel algorithm of global gradient for local update (GLU). GLU is critical for local update operations to effectively compensate the delayed local weights. Furthermore, we implement SSD-SGD on MXNet framework and comprehensively evaluate its performance with CIFAR-10 and ImageNet datasets. Experimental results show that SSD-SGD can accelerate distributed training speed under different experimental configurations, by up to 110%, while achieving good convergence accuracy.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.