Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Structure Preservation for the Deep Neural Network Multigrid Solver (2012.05290v1)

Published 9 Dec 2020 in math.NA and cs.NA

Abstract: The simulation of partial differential equations is a central subject of numerical analysis and an indispensable tool in science, engineering and related fields. Existing approaches, such as finite elements, provide (highly) efficient tools but deep neural network-based techniques emerged in the last few years as an alternative with very promising results. We investigate the combination of both approaches for the approximation of the Navier-Stokes equations and to what extent structural properties such as divergence freedom can and should be respected. Our work is based on DNN-MG, a deep neural network multigrid technique, that we introduced recently and which uses a neural network to represent fine grid fluctuations not resolved by a geometric multigrid finite element solver. Although DNN-MG provides solutions with very good accuracy and is computationally highly efficient, we noticed that the neural network-based corrections substantially violate the divergence freedom of the velocity vector field. In this contribution, we discuss these findings and analyze three approaches to address the problem: a penalty term to encourage divergence freedom of the network output; a penalty term for the corrected velocity field; and a network that learns the stream function, i.e. the scalar potential of the divergence free velocity vector field and which hence yields by construction divergence free corrections. Our experimental results show that the third approach based on the stream function outperforms the other two and not only improves the divergence freedom but in particular also the overall fidelity of the simulation.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.