Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

MetaInfoNet: Learning Task-Guided Information for Sample Reweighting (2012.05273v1)

Published 9 Dec 2020 in cs.LG and cs.CV

Abstract: Deep neural networks have been shown to easily overfit to biased training data with label noise or class imbalance. Meta-learning algorithms are commonly designed to alleviate this issue in the form of sample reweighting, by learning a meta weighting network that takes training losses as inputs to generate sample weights. In this paper, we advocate that choosing proper inputs for the meta weighting network is crucial for desired sample weights in a specific task, while training loss is not always the correct answer. In view of this, we propose a novel meta-learning algorithm, MetaInfoNet, which automatically learns effective representations as inputs for the meta weighting network by emphasizing task-related information with an information bottleneck strategy. Extensive experimental results on benchmark datasets with label noise or class imbalance validate that MetaInfoNet is superior to many state-of-the-art methods.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.