Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cost-Based Budget Active Learning for Deep Learning (2012.05196v1)

Published 9 Dec 2020 in cs.LG and stat.ML

Abstract: Majorly classical Active Learning (AL) approach usually uses statistical theory such as entropy and margin to measure instance utility, however it fails to capture the data distribution information contained in the unlabeled data. This can eventually cause the classifier to select outlier instances to label. Meanwhile, the loss associated with mislabeling an instance in a typical classification task is much higher than the loss associated with the opposite error. To address these challenges, we propose a Cost-Based Bugdet Active Learning (CBAL) which considers the classification uncertainty as well as instance diversity in a population constrained by a budget. A principled approach based on the min-max is considered to minimize both the labeling and decision cost of the selected instances, this ensures a near-optimal results with significantly less computational effort. Extensive experimental results show that the proposed approach outperforms several state-of -the-art active learning approaches.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.