Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Have convolutions already made recurrence obsolete for unconstrained handwritten text recognition ? (2012.04954v1)

Published 9 Dec 2020 in cs.CV

Abstract: Unconstrained handwritten text recognition remains an important challenge for deep neural networks. These last years, recurrent networks and more specifically Long Short-Term Memory networks have achieved state-of-the-art performance in this field. Nevertheless, they are made of a large number of trainable parameters and training recurrent neural networks does not support parallelism. This has a direct influence on the training time of such architectures, with also a direct consequence on the time required to explore various architectures. Recently, recurrence-free architectures such as Fully Convolutional Networks with gated mechanisms have been proposed as one possible alternative achieving competitive results. In this paper, we explore convolutional architectures and compare them to a CNN+BLSTM baseline. We propose an experimental study regarding different architectures on an offline handwriting recognition task using the RIMES dataset, and a modified version of it that consists of augmenting the images with notebook backgrounds that are printed grids.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.