An improved spectral clustering method for mixed membership community detection (2012.04867v2)
Abstract: Community detection has been well studied recent years, but the more realistic case of mixed membership community detection remains a challenge. Here, we develop an efficient spectral algorithm Mixed-ISC based on applying more than K eigenvectors for clustering given K communities for estimating the community memberships under the degree-corrected mixed membership (DCMM) model. We show that the algorithm is asymptotically consistent. Numerical experiments on both simulated networks and many empirical networks demonstrate that Mixed-ISC performs well compared to a number of benchmark methods for mixed membership community detection. Especially, Mixed-ISC provides satisfactory performances on weak signal networks.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.