Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MERANet: Facial Micro-Expression Recognition using 3D Residual Attention Network (2012.04581v2)

Published 7 Dec 2020 in cs.CV

Abstract: Micro-expression has emerged as a promising modality in affective computing due to its high objectivity in emotion detection. Despite the higher recognition accuracy provided by the deep learning models, there are still significant scope for improvements in micro-expression recognition techniques. The presence of micro-expressions in small-local regions of the face, as well as the limited size of available databases, continue to limit the accuracy in recognizing micro-expressions. In this work, we propose a facial micro-expression recognition model using 3D residual attention network named MERANet to tackle such challenges. The proposed model takes advantage of spatial-temporal attention and channel attention together, to learn deeper fine-grained subtle features for classification of emotions. Further, the proposed model encompasses both spatial and temporal information simultaneously using the 3D kernels and residual connections. Moreover, the channel features and spatio-temporal features are re-calibrated using the channel and spatio-temporal attentions, respectively in each residual module. Our attention mechanism enables the model to learn to focus on different facial areas of interest. The experiments are conducted on benchmark facial micro-expression datasets. A superior performance is observed as compared to the state-of-the-art for facial micro-expression recognition on benchmark data.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.