Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Analyzing Finite Neural Networks: Can We Trust Neural Tangent Kernel Theory? (2012.04477v3)

Published 8 Dec 2020 in cs.LG and stat.ML

Abstract: Neural Tangent Kernel (NTK) theory is widely used to study the dynamics of infinitely-wide deep neural networks (DNNs) under gradient descent. But do the results for infinitely-wide networks give us hints about the behavior of real finite-width ones? In this paper, we study empirically when NTK theory is valid in practice for fully-connected ReLU and sigmoid DNNs. We find out that whether a network is in the NTK regime depends on the hyperparameters of random initialization and the network's depth. In particular, NTK theory does not explain the behavior of sufficiently deep networks initialized so that their gradients explode as they propagate through the network's layers: the kernel is random at initialization and changes significantly during training in this case, contrary to NTK theory. On the other hand, in the case of vanishing gradients, DNNs are in the the NTK regime but become untrainable rapidly with depth. We also describe a framework to study generalization properties of DNNs, in particular the variance of network's output function, by means of NTK theory and discuss its limits.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.