Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A General Computational Framework to Measure the Expressiveness of Complex Networks Using a Tighter Upper Bound of Linear Regions (2012.04428v1)

Published 8 Dec 2020 in cs.LG and stat.ML

Abstract: The expressiveness of deep neural network (DNN) is a perspective to understandthe surprising performance of DNN. The number of linear regions, i.e. pieces thata piece-wise-linear function represented by a DNN, is generally used to measurethe expressiveness. And the upper bound of regions number partitioned by a rec-tifier network, instead of the number itself, is a more practical measurement ofexpressiveness of a rectifier DNN. In this work, we propose a new and tighter up-per bound of regions number. Inspired by the proof of this upper bound and theframework of matrix computation in Hinz & Van de Geer (2019), we propose ageneral computational approach to compute a tight upper bound of regions numberfor theoretically any network structures (e.g. DNN with all kind of skip connec-tions and residual structures). Our experiments show our upper bound is tighterthan existing ones, and explain why skip connections and residual structures canimprove network performance.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.