Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

An Answer to the Bose-Nelson Sorting Problem for 11 and 12 Channels (2012.04400v3)

Published 8 Dec 2020 in cs.DS

Abstract: We show that 11-channel sorting networks have at least 35 comparators and that 12-channel sorting networks have at least 39 comparators. This positively settles the optimality of the corresponding sorting networks given in The Art of Computer Programming vol. 3 and closes the two smallest open instances of the Bose-Nelson sorting problem. We obtain these bounds by generalizing a result of Van Voorhis from sorting networks to a more general class of comparator networks. From this we derive a dynamic programming algorithm that computes the optimal size for a sorting network with a given number of channels. From an execution of this algorithm we construct a certificate containing a derivation of the corresponding lower size bound, which we check using a program formally verified using the Isabelle/HOL proof assistant.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube