Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

High-dimensional approximation spaces of artificial neural networks and applications to partial differential equations (2012.04326v2)

Published 8 Dec 2020 in math.NA and cs.NA

Abstract: In this paper we develop a new machinery to study the capacity of artificial neural networks (ANNs) to approximate high-dimensional functions without suffering from the curse of dimensionality. Specifically, we introduce a concept which we refer to as approximation spaces of artificial neural networks and we present several tools to handle those spaces. Roughly speaking, approximation spaces consist of sequences of functions which can, in a suitable way, be approximated by ANNs without curse of dimensionality in the sense that the number of required ANN parameters to approximate a function of the sequence with an accuracy $\varepsilon > 0$ grows at most polynomially both in the reciprocal $1/\varepsilon$ of the required accuracy and in the dimension $d \in \mathbb{N} = {1, 2, 3, \ldots }$ of the function. We show that these approximation spaces are closed under various operations including linear combinations, formations of limits, and infinite compositions. To illustrate the utility of the machinery proposed in this paper, we employ the developed theory to prove that ANNs have the capacity to overcome the curse of dimensionality in the numerical approximation of certain first order transport partial differential equations (PDEs). We even prove that approximation spaces are closed under flows of first order transport PDEs.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.