Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cross-lingual Transfer of Abstractive Summarizer to Less-resource Language (2012.04307v2)

Published 8 Dec 2020 in cs.CL and cs.LG

Abstract: Automatic text summarization extracts important information from texts and presents the information in the form of a summary. Abstractive summarization approaches progressed significantly by switching to deep neural networks, but results are not yet satisfactory, especially for languages where large training sets do not exist. In several natural language processing tasks, a cross-lingual model transfer is successfully applied in less-resource languages. For summarization, the cross-lingual model transfer was not attempted due to a non-reusable decoder side of neural models that cannot correct target language generation. In our work, we use a pre-trained English summarization model based on deep neural networks and sequence-to-sequence architecture to summarize Slovene news articles. We address the problem of inadequate decoder by using an additional LLM for the evaluation of the generated text in target language. We test several cross-lingual summarization models with different amounts of target data for fine-tuning. We assess the models with automatic evaluation measures and conduct a small-scale human evaluation. Automatic evaluation shows that the summaries of our best cross-lingual model are useful and of quality similar to the model trained only in the target language. Human evaluation shows that our best model generates summaries with high accuracy and acceptable readability. However, similar to other abstractive models, our models are not perfect and may occasionally produce misleading or absurd content.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.