A Foundation for Spatio-Textual-Temporal Cube Analytics (Extended Version) (2012.04295v1)
Abstract: Large amounts of spatial, textual, and temporal data are being produced daily. This is data containing an unstructured component (text), a spatial component (geographic position), and a time component (timestamp). Therefore, there is a need for a powerful and general way of analyzing spatial, textual, and temporal data together. In this paper, we define and formalize the Spatio-Textual-Temporal Cube structure to enable combined effective and efficient analytical queries over spatial, textual, and temporal data. Our novel data model over spatio-textual-temporal objects enables novel joint and integrated spatial, textual, and temporal insights that are hard to obtain using existing methods. Moreover, we introduce the new concept of spatio-textual-temporal measures with associated novel spatio-textual-temporal-OLAP operators. To allow for efficient large-scale analytics, we present a pre-aggregation framework for the exact and approximate computation of spatio-textual-temporal measures. Our comprehensive experimental evaluation on a real-world Twitter dataset confirms that our proposed methods reduce query response time by 1-5 orders of magnitude compared to the No Materialization baseline and decrease storage cost between 97% and 99.9% compared to the Full Materialization baseline while adding only a negligible overhead in the Spatio-Textual-Temporal Cube construction time. Moreover, approximate computation achieves an accuracy between 90% and 100% while reducing query response time by 3-5 orders of magnitude compared to No Materialization.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.