Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multi-modal Visual Tracking: Review and Experimental Comparison (2012.04176v1)

Published 8 Dec 2020 in cs.CV

Abstract: Visual object tracking, as a fundamental task in computer vision, has drawn much attention in recent years. To extend trackers to a wider range of applications, researchers have introduced information from multiple modalities to handle specific scenes, which is a promising research prospect with emerging methods and benchmarks. To provide a thorough review of multi-modal track-ing, we summarize the multi-modal tracking algorithms, especially visible-depth (RGB-D) tracking and visible-thermal (RGB-T) tracking in a unified taxonomy from different aspects. Second, we provide a detailed description of the related benchmarks and challenges. Furthermore, we conduct extensive experiments to analyze the effectiveness of trackers on five datasets: PTB, VOT19-RGBD, GTOT, RGBT234, and VOT19-RGBT. Finally, we discuss various future directions from different perspectives, including model design and dataset construction for further research.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.