Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Placement is not Enough: Embedding with Proactive Stream Mapping on the Heterogenous Edge (2012.04158v1)

Published 8 Dec 2020 in cs.NI and cs.DC

Abstract: Edge computing is naturally suited to the applications generated by Internet of Things (IoT) nodes. The IoT applications generally take the form of directed acyclic graphs (DAGs), where vertices represent interdependent functions and edges represent data streams. The status quo of minimizing the makespan of the DAG motivates the study on optimal function placement. However, current approaches lose sight of proactively mapping the data streams to the physical links between the heterogenous edge servers, which could affect the makespan of DAGs significantly. To solve this problem, we study both function placement and stream mapping with data splitting simultaneously, and propose the algorithm DPE (Dynamic Programming-based Embedding). DPE is theoretically verified to achieve the global optimality of the embedding problem. The complexity analysis is also provided. Extensive experiments on Alibaba cluster trace dataset show that DPE significantly outperforms two state-of-the-art joint function placement and task scheduling algorithms in makespan by 43.19% and 40.71%, respectively.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.