Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 130 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Quantum LDPC Codes with Almost Linear Minimum Distance (2012.04068v2)

Published 7 Dec 2020 in cs.IT, math.IT, and quant-ph

Abstract: We give a construction of quantum LDPC codes of dimension $\Theta(\log N)$ and distance $\Theta(N/\log N)$ as the code length $N\to\infty$. Using a product of chain complexes this construction also provides a family of quantum LDPC codes of distance $\Omega(N{1-\alpha/2}/\log N)$ and dimension $\Omega(N\alpha \log N)$, where $0 \le \alpha < 1$. We also introduce and study a new operation called lifted product, which naturally generalizes the product operations for quantum codes and chain complexes. Moreover, as a simple byproduct of our results on quantum codes, we obtain a new result on classical codes. We show that for any fixed $R < 1$ there exists an asymptotically good family of classical quasi-cyclic LDPC codes of rate at least $R$ with, in some sense, optimal circulant size $\Omega(N/\log N)$ as the code length $N\to\infty$.

Citations (129)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.