Monotone Circuit Lower Bounds from Robust Sunflowers (2012.03883v2)
Abstract: Robust sunflowers are a generalization of combinatorial sunflowers that have applications in monotone circuit complexity, DNF sparsification, randomness extractors, and recent advances on the Erd\H{o}s-Rado sunflower conjecture. The recent breakthrough of Alweiss, Lovett, Wu and Zhang gives an improved bound on the maximum size of a $w$-set system that excludes a robust sunflower. In this paper, we use this result to obtain an $\exp(n{1/2-o(1)})$ lower bound on the monotone circuit size of an explicit $n$-variate monotone function, improving the previous best known $\exp(n{1/3-o(1)})$ due to Andreev and Harnik and Raz. We also show an $\exp(\Omega(n))$ lower bound on the monotone arithmetic circuit size of a related polynomial. Finally, we introduce a notion of robust clique-sunflowers and use this to prove an $n{\Omega(k)}$ lower bound on the monotone circuit size of the CLIQUE function for all $k \le n{1/3-o(1)}$, strengthening the bound of Alon and Boppana.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.