Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Self-supervised asymmetric deep hashing with margin-scalable constraint (2012.03820v3)

Published 7 Dec 2020 in cs.CV

Abstract: Due to its effectivity and efficiency, deep hashing approaches are widely used for large-scale visual search. However, it is still challenging to produce compact and discriminative hash codes for images associated with multiple semantics for two main reasons, 1) similarity constraints designed in most of the existing methods are based upon an oversimplified similarity assignment(i.e., 0 for instance pairs sharing no label, 1 for instance pairs sharing at least 1 label), 2) the exploration in multi-semantic relevance are insufficient or even neglected in many of the existing methods. These problems significantly limit the discrimination of generated hash codes. In this paper, we propose a novel self-supervised asymmetric deep hashing method with a margin-scalable constraint(SADH) approach to cope with these problems. SADH implements a self-supervised network to sufficiently preserve semantic information in a semantic feature dictionary and a semantic code dictionary for the semantics of the given dataset, which efficiently and precisely guides a feature learning network to preserve multilabel semantic information using an asymmetric learning strategy. By further exploiting semantic dictionaries, a new margin-scalable constraint is employed for both precise similarity searching and robust hash code generation. Extensive empirical research on four popular benchmarks validates the proposed method and shows it outperforms several state-of-the-art approaches.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.