Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SRECG: ECG Signal Super-resolution Framework for Portable/Wearable Devices in Cardiac Arrhythmias Classification (2012.03803v2)

Published 7 Dec 2020 in eess.SP and cs.LG

Abstract: A combination of cloud-based deep learning (DL) algorithms with portable/wearable (P/W) devices has been developed as a smart heath care system to support automatic cardiac arrhythmias (CAs) classification using electrocardiography (ECG). However, long-term and continuous ECG monitoring is challenging because of limitations of batteries and transmission bandwidth of P/W devices while incorporated with consumer electronics (CE). A feasible approach to address this challenge is to decrease sampling rates. However, low sampling rates lead to low-resolution signals that hinder the CAs classification performance. In this study, we propose a DL-based ECG signal super-resolution framework (called SRECG) to enhance low-resolution ECG signals by jointly considering the accuracies when applied to the DL-based high-resolution multiclass classifier (HMC) of CAs. In our experiments, we downsampled the ECG signals from the CPSC2018 dataset and evaluated their HMC accuracies with and without the SRECG. Experimental results show that SRECG can well improve the HMC accuracies as compared to traditional interpolation methods. Moreover, approximately half of the CAs classification accuracies of HMC were maintained within the enhanced ECG signals by SRECG. The promising results confirm that SRECG can be suitably used to enhance low-resolution ECG signals from P/W devices with CE to improve their cloud-based HMC performances.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.