Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Explainable AI for Interpretable Credit Scoring (2012.03749v1)

Published 3 Dec 2020 in q-fin.RM, cs.AI, and cs.LG

Abstract: With the ever-growing achievements in AI and the recent boosted enthusiasm in Financial Technology (FinTech), applications such as credit scoring have gained substantial academic interest. Credit scoring helps financial experts make better decisions regarding whether or not to accept a loan application, such that loans with a high probability of default are not accepted. Apart from the noisy and highly imbalanced data challenges faced by such credit scoring models, recent regulations such as the `right to explanation' introduced by the General Data Protection Regulation (GDPR) and the Equal Credit Opportunity Act (ECOA) have added the need for model interpretability to ensure that algorithmic decisions are understandable and coherent. An interesting concept that has been recently introduced is eXplainable AI (XAI), which focuses on making black-box models more interpretable. In this work, we present a credit scoring model that is both accurate and interpretable. For classification, state-of-the-art performance on the Home Equity Line of Credit (HELOC) and Lending Club (LC) Datasets is achieved using the Extreme Gradient Boosting (XGBoost) model. The model is then further enhanced with a 360-degree explanation framework, which provides different explanations (i.e. global, local feature-based and local instance-based) that are required by different people in different situations. Evaluation through the use of functionallygrounded, application-grounded and human-grounded analysis show that the explanations provided are simple, consistent as well as satisfy the six predetermined hypotheses testing for correctness, effectiveness, easy understanding, detail sufficiency and trustworthiness.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.