Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Reference Knowledgeable Network for Machine Reading Comprehension (2012.03709v3)

Published 7 Dec 2020 in cs.CL and cs.AI

Abstract: Multi-choice Machine Reading Comprehension (MRC) as a challenge requires models to select the most appropriate answer from a set of candidates with a given passage and question. Most of the existing researches focus on the modeling of specific tasks or complex networks, without explicitly referring to relevant and credible external knowledge sources, which are supposed to greatly make up for the deficiency of the given passage. Thus we propose a novel reference-based knowledge enhancement model called Reference Knowledgeable Network (RekNet), which simulates human reading strategies to refine critical information from the passage and quote explicit knowledge in necessity. In detail, RekNet refines finegrained critical information and defines it as Reference Span, then quotes explicit knowledge quadruples by the co-occurrence information of Reference Span and candidates. The proposed RekNet is evaluated on three multi-choice MRC benchmarks: RACE, DREAM and Cosmos QA, obtaining consistent and remarkable performance improvement with observable statistical significance level over strong baselines. Our code is available at https://github.com/Yilin1111/RekNet.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.