Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Noise and Fluctuation of Finite Learning Rate Stochastic Gradient Descent (2012.03636v4)

Published 7 Dec 2020 in stat.ML and cs.LG

Abstract: In the vanishing learning rate regime, stochastic gradient descent (SGD) is now relatively well understood. In this work, we propose to study the basic properties of SGD and its variants in the non-vanishing learning rate regime. The focus is on deriving exactly solvable results and discussing their implications. The main contributions of this work are to derive the stationary distribution for discrete-time SGD in a quadratic loss function with and without momentum; in particular, one implication of our result is that the fluctuation caused by discrete-time dynamics takes a distorted shape and is dramatically larger than a continuous-time theory could predict. Examples of applications of the proposed theory considered in this work include the approximation error of variants of SGD, the effect of minibatch noise, the optimal Bayesian inference, the escape rate from a sharp minimum, and the stationary covariance of a few second-order methods including damped Newton's method, natural gradient descent, and Adam.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.