Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Noise2Kernel: Adaptive Self-Supervised Blind Denoising using a Dilated Convolutional Kernel Architecture (2012.03623v1)

Published 7 Dec 2020 in eess.IV and cs.CV

Abstract: With the advent of recent advances in unsupervised learning, efficient training of a deep network for image denoising without pairs of noisy and clean images has become feasible. However, most current unsupervised denoising methods are built on the assumption of zero-mean noise under the signal-independent condition. This assumption causes blind denoising techniques to suffer brightness shifting problems on images that are greatly corrupted by extreme noise such as salt-and-pepper noise. Moreover, most blind denoising methods require a random masking scheme for training to ensure the invariance of the denoising process. In this paper, we propose a dilated convolutional network that satisfies an invariant property, allowing efficient kernel-based training without random masking. We also propose an adaptive self-supervision loss to circumvent the requirement of zero-mean constraint, which is specifically effective in removing salt-and-pepper or hybrid noise where a prior knowledge of noise statistics is not readily available. We demonstrate the efficacy of the proposed method by comparing it with state-of-the-art denoising methods using various examples.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.