Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Global Riemannian Acceleration in Hyperbolic and Spherical Spaces (2012.03618v5)

Published 7 Dec 2020 in math.OC and stat.ML

Abstract: We further research on the accelerated optimization phenomenon on Riemannian manifolds by introducing accelerated global first-order methods for the optimization of $L$-smooth and geodesically convex (g-convex) or $\mu$-strongly g-convex functions defined on the hyperbolic space or a subset of the sphere. For a manifold other than the Euclidean space, these are the first methods to \emph{globally} achieve the same rates as accelerated gradient descent in the Euclidean space with respect to $L$ and $\epsilon$ (and $\mu$ if it applies), up to log factors. Due to the geometric deformations, our rates have an extra factor, depending on the initial distance $R$ to a minimizer and the curvature $K$, with respect to Euclidean accelerated algorithms As a proxy for our solution, we solve a constrained non-convex Euclidean problem, under a condition between convexity and \emph{quasar-convexity}, of independent interest. Additionally, for any Riemannian manifold of bounded sectional curvature, we provide reductions from optimization methods for smooth and g-convex functions to methods for smooth and strongly g-convex functions and vice versa. We also reduce global optimization to optimization over bounded balls where the effect of the curvature is reduced.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.