Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The local discontinuous Galerkin method on layer-adapted meshes for time-dependent singularly perturbed convection-diffusion problems (2012.03560v1)

Published 7 Dec 2020 in math.NA and cs.NA

Abstract: In this paper we analyze the error as well for the semi-discretization as the full discretization of a time-dependent convection-diffusion problem. We use for the discretization in space the local discontinuous Galerkin (LDG) method on a class of layer-adapted meshes including Shishkin-type and Bakhvalov-type meshes and the implicit $\theta$-scheme in time. For piecewise tensor-product polynomials of degree $k$ we obtain uniform or almost uniform error estimates with respect to space of order $k+1/2$ in some energy norm and optimal error estimates with respect to time. Our analysis is based on careful approximation error estimates for the Ritz projection related to the stationary problem on the anisotropic meshes used. We discuss also improved estimates in the one-dimensional case and the use of a discontinuous Galekin discretization in time. Numerical experiments are given to support our theoretical results.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.