Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture (2012.03500v1)

Published 7 Dec 2020 in eess.AS and cs.SD

Abstract: In this work, we address the Text-to-Speech (TTS) task by proposing a non-autoregressive architecture called EfficientTTS. Unlike the dominant non-autoregressive TTS models, which are trained with the need of external aligners, EfficientTTS optimizes all its parameters with a stable, end-to-end training procedure, while allowing for synthesizing high quality speech in a fast and efficient manner. EfficientTTS is motivated by a new monotonic alignment modeling approach (also introduced in this work), which specifies monotonic constraints to the sequence alignment with almost no increase of computation. By combining EfficientTTS with different feed-forward network structures, we develop a family of TTS models, including both text-to-melspectrogram and text-to-waveform networks. We experimentally show that the proposed models significantly outperform counterpart models such as Tacotron 2 and Glow-TTS in terms of speech quality, training efficiency and synthesis speed, while still producing the speeches of strong robustness and great diversity. In addition, we demonstrate that proposed approach can be easily extended to autoregressive models such as Tacotron 2.

Citations (37)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.