Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Efficient Heuristic Generation for Robot Path Planning with Recurrent Generative Model (2012.03449v1)

Published 7 Dec 2020 in cs.RO and cs.AI

Abstract: Robot path planning is difficult to solve due to the contradiction between optimality of results and complexity of algorithms, even in 2D environments. To find an optimal path, the algorithm needs to search all the state space, which costs a lot of computation resource. To address this issue, we present a novel recurrent generative model (RGM) which generates efficient heuristic to reduce the search efforts of path planning algorithm. This RGM model adopts the framework of general generative adversarial networks (GAN), which consists of a novel generator that can generate heuristic by refining the outputs recurrently and two discriminators that check the connectivity and safety properties of heuristic. We test the proposed RGM module in various 2D environments to demonstrate its effectiveness and efficiency. The results show that the RGM successfully generates appropriate heuristic in both seen and new unseen maps with a high accuracy, demonstrating the good generalization ability of this model. We also compare the rapidly-exploring random tree star (RRT*) with generated heuristic and the conventional RRT* in four different maps, showing that the generated heuristic can guide the algorithm to find both initial and optimal solution in a faster and more efficient way.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.