Emergent Mind

Abstract

The nuclear norm and Schatten-$p$ quasi-norm are popular rank proxies in low-rank matrix recovery. However, computing the nuclear norm or Schatten-$p$ quasi-norm of a tensor is hard in both theory and practice, hindering their application to low-rank tensor completion (LRTC) and tensor robust principal component analysis (TRPCA). In this paper, we propose a new class of tensor rank regularizers based on the Euclidean norms of the CP component vectors of a tensor and show that these regularizers are monotonic transformations of tensor Schatten-$p$ quasi-norm. This connection enables us to minimize the Schatten-$p$ quasi-norm in LRTC and TRPCA implicitly via the component vectors. The method scales to big tensors and provides an arbitrarily sharper rank proxy for low-rank tensor recovery compared to the nuclear norm. On the other hand, we study the generalization abilities of LRTC with the Schatten-$p$ quasi-norm regularizer and LRTC with the proposed regularizers. The theorems show that a relatively sharper regularizer leads to a tighter error bound, which is consistent with our numerical results. Particularly, we prove that for LRTC with Schatten-$p$ quasi-norm regularizer on $d$-order tensors, $p=1/d$ is always better than any $p>1/d$ in terms of the generalization ability. We also provide a recovery error bound to verify the usefulness of small $p$ in the Schatten-$p$ quasi-norm for TRPCA. Numerical results on synthetic data and real data demonstrate the effectiveness of the regularization methods and theorems.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.