Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Interpreting Deep Neural Networks with Relative Sectional Propagation by Analyzing Comparative Gradients and Hostile Activations (2012.03434v2)

Published 7 Dec 2020 in cs.CV

Abstract: The clear transparency of Deep Neural Networks (DNNs) is hampered by complex internal structures and nonlinear transformations along deep hierarchies. In this paper, we propose a new attribution method, Relative Sectional Propagation (RSP), for fully decomposing the output predictions with the characteristics of class-discriminative attributions and clear objectness. We carefully revisit some shortcomings of backpropagation-based attribution methods, which are trade-off relations in decomposing DNNs. We define hostile factor as an element that interferes with finding the attributions of the target and propagate it in a distinguishable way to overcome the non-suppressed nature of activated neurons. As a result, it is possible to assign the bi-polar relevance scores of the target (positive) and hostile (negative) attributions while maintaining each attribution aligned with the importance. We also present the purging techniques to prevent the decrement of the gap between the relevance scores of the target and hostile attributions during backward propagation by eliminating the conflicting units to channel attribution map. Therefore, our method makes it possible to decompose the predictions of DNNs with clearer class-discriminativeness and detailed elucidations of activation neurons compared to the conventional attribution methods. In a verified experimental environment, we report the results of the assessments: (i) Pointing Game, (ii) mIoU, and (iii) Model Sensitivity with PASCAL VOC 2007, MS COCO 2014, and ImageNet datasets. The results demonstrate that our method outperforms existing backward decomposition methods, including distinctive and intuitive visualizations.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.