Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 411 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Proactive Pseudo-Intervention: Causally Informed Contrastive Learning For Interpretable Vision Models (2012.03369v2)

Published 6 Dec 2020 in cs.CV and cs.AI

Abstract: Deep neural networks excel at comprehending complex visual signals, delivering on par or even superior performance to that of human experts. However, ad-hoc visual explanations of model decisions often reveal an alarming level of reliance on exploiting non-causal visual cues that strongly correlate with the target label in training data. As such, deep neural nets suffer compromised generalization to novel inputs collected from different sources, and the reverse engineering of their decision rules offers limited interpretability. To overcome these limitations, we present a novel contrastive learning strategy called {\it Proactive Pseudo-Intervention} (PPI) that leverages proactive interventions to guard against image features with no causal relevance. We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability. To demonstrate the utility of our proposals, we benchmark on both standard natural images and challenging medical image datasets. PPI-enhanced models consistently deliver superior performance relative to competing solutions, especially on out-of-domain predictions and data integration from heterogeneous sources. Further, our causally trained saliency maps are more succinct and meaningful relative to their non-causal counterparts.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.