Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 68 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 223 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

Efficient Human Pose Estimation with Depthwise Separable Convolution and Person Centroid Guided Joint Grouping (2012.03316v1)

Published 6 Dec 2020 in cs.CV

Abstract: In this paper, we propose efficient and effective methods for 2D human pose estimation. A new ResBlock is proposed based on depthwise separable convolution and is utilized instead of the original one in Hourglass network. It can be further enhanced by replacing the vanilla depthwise convolution with a mixed depthwise convolution. Based on it, we propose a bottom-up multi-person pose estimation method. A rooted tree is used to represent human pose by introducing person centroid as the root which connects to all body joints directly or hierarchically. Two branches of sub-networks are used to predict the centroids, body joints and their offsets to their parent nodes. Joints are grouped by tracing along their offsets to the closest centroids. Experimental results on the MPII human dataset and the LSP dataset show that both our single-person and multi-person pose estimation methods can achieve competitive accuracies with low computational costs.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.