Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 116 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Materials In Paintings (MIP): An interdisciplinary dataset for perception, art history, and computer vision (2012.02996v2)

Published 5 Dec 2020 in cs.HC

Abstract: A painter is free to modify how components of a natural scene are depicted, which can lead to a perceptually convincing image of the distal world. This signals a major difference between photos and paintings: paintings are explicitly created for human perception. Studying these painterly depictions could be beneficial to a multidisciplinary audience. In this paper, we capture and explore the painterly depictions of materials to enable the study of depiction and perception of materials through the artists' eye. We annotated a dataset of 19k paintings with 200k+ bounding boxes from which polygon segments were automatically extracted. Each bounding box was assigned a coarse label (e.g., fabric) and a fine-grained label (e.g., velvety, silky). We demonstrate the cross-disciplinary utility of our dataset by presenting novel findings across art history, human perception, and computer vision. Our experiments include analyzing the distribution of materials depicted in paintings, showing how painters create convincing depictions using a stylized approach, and demonstrating how paintings can be used to build more robust computer vision models. We conclude that our dataset of painterly material depictions is a rich source for gaining insights into the depiction and perception of materials across multiple disciplines. The MIP dataset is freely accessible at https://materialsinpaintings.tudelft.nl

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.