Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Boosting offline handwritten text recognition in historical documents with few labeled lines (2012.02544v1)

Published 4 Dec 2020 in cs.CV

Abstract: In this paper, we face the problem of offline handwritten text recognition (HTR) in historical documents when few labeled samples are available and some of them contain errors in the train set. Three main contributions are developed. First we analyze how to perform transfer learning (TL) from a massive database to a smaller historical database, analyzing which layers of the model need a fine-tuning process. Second, we analyze methods to efficiently combine TL and data augmentation (DA). Finally, an algorithm to mitigate the effects of incorrect labelings in the training set is proposed. The methods are analyzed over the ICFHR 2018 competition database, Washington and Parzival. Combining all these techniques, we demonstrate a remarkable reduction of CER (up to 6% in some cases) in the test set with little complexity overhead.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.