Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Compressive Sensing Approaches for Sparse Distribution Estimation Under Local Privacy (2012.02081v2)

Published 3 Dec 2020 in cs.IT, cs.CR, cs.LG, math.IT, and stat.ML

Abstract: Recent years, local differential privacy (LDP) has been adopted by many web service providers like Google \cite{erlingsson2014rappor}, Apple \cite{apple2017privacy} and Microsoft \cite{bolin2017telemetry} to collect and analyse users' data privately. In this paper, we consider the problem of discrete distribution estimation under local differential privacy constraints. Distribution estimation is one of the most fundamental estimation problems, which is widely studied in both non-private and private settings. In the local model, private mechanisms with provably optimal sample complexity are known. However, they are optimal only in the worst-case sense; their sample complexity is proportional to the size of the entire universe, which could be huge in practice. In this paper, we consider sparse or approximately sparse (e.g.\ highly skewed) distribution, and show that the number of samples needed could be significantly reduced. This problem has been studied recently \cite{acharya2021estimating}, but they only consider strict sparse distributions and the high privacy regime. We propose new privatization mechanisms based on compressive sensing. Our methods work for approximately sparse distributions and medium privacy, and have optimal sample and communication complexity.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.