Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Light-field view synthesis using convolutional block attention module (2012.01900v2)

Published 3 Dec 2020 in eess.IV

Abstract: Consumer light-field (LF) cameras suffer from a low or limited resolution because of the angular-spatial trade-off. To alleviate this drawback, we propose a novel learning-based approach utilizing attention mechanism to synthesize novel views of a light-field image using a sparse set of input views (i.e., 4 corner views) from a camera array. In the proposed method, we divide the process into three stages, stereo-feature extraction, disparity estimation, and final image refinement. We use three sequential convolutional neural networks for each stage. A residual convolutional block attention module (CBAM) is employed for final adaptive image refinement. Attention modules are helpful in learning and focusing more on the important features of the image and are thus sequentially applied in the channel and spatial dimensions. Experimental results show the robustness of the proposed method. Our proposed network outperforms the state-of-the-art learning-based light-field view synthesis methods on two challenging real-world datasets by 0.5 dB on average. Furthermore, we provide an ablation study to substantiate our findings.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube