Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Cross-Modal Retrieval and Synthesis (X-MRS): Closing the Modality Gap in Shared Representation Learning (2012.01345v3)

Published 2 Dec 2020 in cs.CV, cs.IR, and cs.LG

Abstract: Computational food analysis (CFA) naturally requires multi-modal evidence of a particular food, e.g., images, recipe text, etc. A key to making CFA possible is multi-modal shared representation learning, which aims to create a joint representation of the multiple views (text and image) of the data. In this work we propose a method for food domain cross-modal shared representation learning that preserves the vast semantic richness present in the food data. Our proposed method employs an effective transformer-based multilingual recipe encoder coupled with a traditional image embedding architecture. Here, we propose the use of imperfect multilingual translations to effectively regularize the model while at the same time adding functionality across multiple languages and alphabets. Experimental analysis on the public Recipe1M dataset shows that the representation learned via the proposed method significantly outperforms the current state-of-the-arts (SOTA) on retrieval tasks. Furthermore, the representational power of the learned representation is demonstrated through a generative food image synthesis model conditioned on recipe embeddings. Synthesized images can effectively reproduce the visual appearance of paired samples, indicating that the learned representation captures the joint semantics of both the textual recipe and its visual content, thus narrowing the modality gap.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.