Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Biomedical Knowledge Graph Refinement with Embedding and Logic Rules (2012.01031v1)

Published 2 Dec 2020 in cs.AI and cs.CL

Abstract: Currently, there is a rapidly increasing need for high-quality biomedical knowledge graphs (BioKG) that provide direct and precise biomedical knowledge. In the context of COVID-19, this issue is even more necessary to be highlighted. However, most BioKG construction inevitably includes numerous conflicts and noises deriving from incorrect knowledge descriptions in literature and defective information extraction techniques. Many studies have demonstrated that reasoning upon the knowledge graph is effective in eliminating such conflicts and noises. This paper proposes a method BioGRER to improve the BioKG's quality, which comprehensively combines the knowledge graph embedding and logic rules that support and negate triplets in the BioKG. In the proposed model, the BioKG refinement problem is formulated as the probability estimation for triplets in the BioKG. We employ the variational EM algorithm to optimize knowledge graph embedding and logic rule inference alternately. In this way, our model could combine efforts from both the knowledge graph embedding and logic rules, leading to better results than using them alone. We evaluate our model over a COVID-19 knowledge graph and obtain competitive results.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.