Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Data Augmentation with norm-VAE for Unsupervised Domain Adaptation (2012.00848v1)

Published 1 Dec 2020 in cs.CV and cs.LG

Abstract: We address the Unsupervised Domain Adaptation (UDA) problem in image classification from a new perspective. In contrast to most existing works which either align the data distributions or learn domain-invariant features, we directly learn a unified classifier for both domains within a high-dimensional homogeneous feature space without explicit domain adaptation. To this end, we employ the effective Selective Pseudo-Labelling (SPL) techniques to take advantage of the unlabelled samples in the target domain. Surprisingly, data distribution discrepancy across the source and target domains can be well handled by a computationally simple classifier (e.g., a shallow Multi-Layer Perceptron) trained in the original feature space. Besides, we propose a novel generative model norm-VAE to generate synthetic features for the target domain as a data augmentation strategy to enhance classifier training. Experimental results on several benchmark datasets demonstrate the pseudo-labelling strategy itself can lead to comparable performance to many state-of-the-art methods whilst the use of norm-VAE for feature augmentation can further improve the performance in most cases. As a result, our proposed methods (i.e. naive-SPL and norm-VAE-SPL) can achieve new state-of-the-art performance with the average accuracy of 93.4% and 90.4% on Office-Caltech and ImageCLEF-DA datasets, and comparable performance on Digits, Office31 and Office-Home datasets with the average accuracy of 97.2%, 87.6% and 67.9% respectively.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.