Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Study of Checkpointing in Large Scale Training of Deep Neural Networks (2012.00825v2)

Published 1 Dec 2020 in cs.DC

Abstract: Deep learning (DL) applications are increasingly being deployed on HPC systems, to leverage the massive parallelism and computing power of those systems for DL model training. While significant effort has been put to facilitate distributed training by DL frameworks, fault tolerance has been largely ignored. In this work, we evaluate checkpoint-restart, a common fault tolerance technique in HPC workloads. We perform experiments with three state-of-the-art DL frameworks common in HPC Chainer, PyTorch, and TensorFlow). We evaluate the computational cost of checkpointing, file formats and file sizes, the impact of scale, and deterministic checkpointing. Our evaluation shows some critical differences in checkpoint mechanisms and exposes several bottlenecks in existing checkpointing implementations. We provide discussion points that can aid users in selecting a fault-tolerant framework to use in HPC. We also provide takeaway points that framework developers can use to facilitate better checkpointing of DL workloads in HPC.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.