Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the robustness of minimum norm interpolators and regularized empirical risk minimizers (2012.00807v3)

Published 1 Dec 2020 in math.ST, cs.IT, cs.NA, math.IT, math.NA, stat.ML, and stat.TH

Abstract: This article develops a general theory for minimum norm interpolating estimators and regularized empirical risk minimizers (RERM) in linear models in the presence of additive, potentially adversarial, errors. In particular, no conditions on the errors are imposed. A quantitative bound for the prediction error is given, relating it to the Rademacher complexity of the covariates, the norm of the minimum norm interpolator of the errors and the size of the subdifferential around the true parameter. The general theory is illustrated for Gaussian features and several norms: The $\ell_1$, $\ell_2$, group Lasso and nuclear norms. In case of sparsity or low-rank inducing norms, minimum norm interpolators and RERM yield a prediction error of the order of the average noise level, provided that the overparameterization is at least a logarithmic factor larger than the number of samples and that, in case of RERM, the regularization parameter is small enough. Lower bounds that show near optimality of the results complement the analysis.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.