Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Cross-Modality Protein Embedding for Compound-Protein Affinity and Contact Prediction (2012.00651v1)

Published 14 Nov 2020 in q-bio.BM and cs.LG

Abstract: Compound-protein pairs dominate FDA-approved drug-target pairs and the prediction of compound-protein affinity and contact (CPAC) could help accelerate drug discovery. In this study we consider proteins as multi-modal data including 1D amino-acid sequences and (sequence-predicted) 2D residue-pair contact maps. We empirically evaluate the embeddings of the two single modalities in their accuracy and generalizability of CPAC prediction (i.e. structure-free interpretable compound-protein affinity prediction). And we rationalize their performances in both challenges of embedding individual modalities and learning generalizable embedding-label relationship. We further propose two models involving cross-modality protein embedding and establish that the one with cross interaction (thus capturing correlations among modalities) outperforms SOTAs and our single modality models in affinity, contact, and binding-site predictions for proteins never seen in the training set.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube