Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

NPAS: A Compiler-aware Framework of Unified Network Pruning and Architecture Search for Beyond Real-Time Mobile Acceleration (2012.00596v3)

Published 1 Dec 2020 in cs.LG, cs.AI, cs.CV, and cs.NE

Abstract: With the increasing demand to efficiently deploy DNNs on mobile edge devices, it becomes much more important to reduce unnecessary computation and increase the execution speed. Prior methods towards this goal, including model compression and network architecture search (NAS), are largely performed independently and do not fully consider compiler-level optimizations which is a must-do for mobile acceleration. In this work, we first propose (i) a general category of fine-grained structured pruning applicable to various DNN layers, and (ii) a comprehensive, compiler automatic code generation framework supporting different DNNs and different pruning schemes, which bridge the gap of model compression and NAS. We further propose NPAS, a compiler-aware unified network pruning, and architecture search. To deal with large search space, we propose a meta-modeling procedure based on reinforcement learning with fast evaluation and Bayesian optimization, ensuring the total number of training epochs comparable with representative NAS frameworks. Our framework achieves 6.7ms, 5.9ms, 3.9ms ImageNet inference times with 78.2%, 75% (MobileNet-V3 level), and 71% (MobileNet-V2 level) Top-1 accuracy respectively on an off-the-shelf mobile phone, consistently outperforming prior work.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube