Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Time-Space Lower Bounds for Simulating Proof Systems with Quantum and Randomized Verifiers (2012.00330v2)

Published 1 Dec 2020 in cs.CC

Abstract: A line of work initiated by Fortnow in 1997 has proven model-independent time-space lower bounds for the $\mathsf{SAT}$ problem and related problems within the polynomial-time hierarchy. For example, for the $\mathsf{SAT}$ problem, the state-of-the-art is that the problem cannot be solved by random-access machines in $nc$ time and $n{o(1)}$ space simultaneously for $c < 2\cos(\frac{\pi}{7}) \approx 1.801$. We extend this lower bound approach to the quantum and randomized domains. Combining Grover's algorithm with components from $\mathsf{SAT}$ time-space lower bounds, we show that there are problems verifiable in $O(n)$ time with quantum Merlin-Arthur protocols that cannot be solved in $nc$ time and $n{o(1)}$ space simultaneously for $c < \frac{3+\sqrt{3}}{2} \approx 2.366$, a super-quadratic time lower bound. This result and the prior work on $\mathsf{SAT}$ can both be viewed as consequences of a more general formula for time lower bounds against small-space algorithms, whose asymptotics we study in full. We also show lower bounds against randomized algorithms: there are problems verifiable in $O(n)$ time with (classical) Merlin-Arthur protocols that cannot be solved in $nc$ randomized time and $n{o(1)}$ space simultaneously for $c < 1.465$, improving a result of Diehl. For quantum Merlin-Arthur protocols, the lower bound in this setting can be improved to $c < 1.5$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.