Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Optimal Distributed Control for Leader-Follower Networks: A Scalable Design (2012.00239v1)

Published 1 Dec 2020 in math.OC, cs.SY, and eess.SY

Abstract: The focus of this paper is directed towards optimal control of multi-agent systems consisting of one leader and a number of followers in the presence of noise. The dynamics of every agent is assumed to be linear, and the performance index is a quadratic function of the states and actions of the leader and followers. The leader and followers are coupled in both dynamics and cost. The state of the leader and the average of the states of all followers (called mean-field) are common information and known to all agents; however, the local state of the followers are private information and unknown to other agents. It is shown that the optimal distributed control strategy is linear time-varying, and its computational complexity is independent of the number of followers. This strategy can be computed in a distributed manner, where the leader needs to solve one Riccati equation to determine its optimal strategy while each follower needs to solve two Riccati equations to obtain its optimal strategy. This result is subsequently extended to the case of the infinite horizon discounted and undiscounted cost functions, where the optimal distributed strategy is shown to be stationary. A numerical example with $100$ followers is provided to demonstrate the efficacy of the results.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.