Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

LifeStream: A High-Performance Stream Processing Engine for Periodic Streams (2012.00192v2)

Published 1 Dec 2020 in cs.DC

Abstract: Hospitals around the world collect massive amounts of physiological data from their patients every day. Recently, there has been an increase in research interest to subject this data to statistical analysis to gain more insights and provide improved medical diagnoses. Such analyses require complex computations on large volumes of data, demanding efficient data processing systems. This paper shows that currently available data processing solutions either fail to meet the performance requirements or lack simple and flexible programming interfaces. To address this problem, we propose \emph{LifeStream}, a high-performance stream processing engine for physiological data. LifeStream hits the sweet spot between ease of programming by providing a rich temporal query language support and performance by employing optimizations that exploit the periodic nature of physiological data. We demonstrate that LifeStream achieves end-to-end performance up to $7.5\times$ higher than state-of-the-art streaming engines and $3.2\times$ than hand-optimized numerical libraries on real-world datasets and workloads.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.