Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Label-Agnostic Emotion Embeddings (2012.00190v2)

Published 1 Dec 2020 in cs.CL, cs.AI, and cs.LG

Abstract: Research in emotion analysis is scattered across different label formats (e.g., polarity types, basic emotion categories, and affective dimensions), linguistic levels (word vs. sentence vs. discourse), and, of course, (few well-resourced but much more under-resourced) natural languages and text genres (e.g., product reviews, tweets, news). The resulting heterogeneity makes data and software developed under these conflicting constraints hard to compare and challenging to integrate. To resolve this unsatisfactory state of affairs we here propose a training scheme that learns a shared latent representation of emotion independent from different label formats, natural languages, and even disparate model architectures. Experiments on a wide range of datasets indicate that this approach yields the desired interoperability without penalizing prediction quality. Code and data are archived under DOI 10.5281/zenodo.5466068.

Citations (9)

Summary

We haven't generated a summary for this paper yet.