Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Move to See Better: Self-Improving Embodied Object Detection (2012.00057v2)

Published 30 Nov 2020 in cs.CV, cs.AI, and cs.LG

Abstract: Passive methods for object detection and segmentation treat images of the same scene as individual samples and do not exploit object permanence across multiple views. Generalization to novel or difficult viewpoints thus requires additional training with lots of annotations. In contrast, humans often recognize objects by simply moving around, to get more informative viewpoints. In this paper, we propose a method for improving object detection in testing environments, assuming nothing but an embodied agent with a pre-trained 2D object detector. Our agent collects multi-view data, generates 2D and 3D pseudo-labels, and fine-tunes its detector in a self-supervised manner. Experiments on both indoor and outdoor datasets show that (1) our method obtains high-quality 2D and 3D pseudo-labels from multi-view RGB-D data; (2) fine-tuning with these pseudo-labels improves the 2D detector significantly in the test environment; (3) training a 3D detector with our pseudo-labels outperforms a prior self-supervised method by a large margin; (4) given weak supervision, our method can generate better pseudo-labels for novel objects.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.