Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Big Data-driven Automated Anomaly Detection and Performance Forecasting in Mobile Networks (2011.14968v1)

Published 30 Nov 2020 in cs.NI

Abstract: The massive amount of data available in operational mobile networks offers an invaluable opportunity for operators to detect and analyze possible anomalies and predict network performance. In particular, application of advanced ML techniques on data aggregated from multiple sources can lead to important insights, not only for the detection of anomalous behavior but also for performance forecasting, thereby complementing classic network operation and maintenance solutions with intelligent monitoring tools. In this paper, we propose a novel framework that aggregates diverse data sets (e.g. configuration, performance, inventory, locations, user speeds) from an operational LTE network and applies ML algorithms to diagnose network issues and analyze their impact on key performance indicators. To this end, pattern identification and time-series forecasting algorithms are used on the ingested data. Results show that proposed framework can indeed be leveraged to automate the identification of anomalous behaviors associated with the spatial-temporal characteristics, and predict customer impact in an accurate manner.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.